Applicability of a Toroidal Hull Structure for Floating Wind

Kurt Delpeche Pacifico Energy K.K. Offshore Wind

ISOPE-2019 Honolulu Conference

The 29th International Ocean and Polar Engineering Conference

Honolulu, Hawaii, USA, June 16–21, 2019: <u>www.isope.org</u>

Self Introduction

- Mr Kurt Delpeche
 - Pacifico Energy K.K., Offshore Wind, Japan
 - Foundations Package Manager
 - □ MSc in Offshore Engineering, 2008
 - □ Newcastle University, UK, Marine department
 - Hydrodynamic and Experimental Analysis on a Novel Hybrid Floating Offshore Renewable Energy Structure

Outline

- Background
 - Context
 - Historical concepts
 - Current concepts
 - Toroidal hull concept
- Design and hydrodynamics
- Experimental setup
- Results

Context – Design and Modelling Process

• Historical concepts

Taut moored SPAR (Susuki et al)

Shim wind-wave device (Cho and Shim, 1999)

Box girder (Ohta et al, 2003)

TLP concept (Musial et al, 2004)

Multi-turbine floater (Henderson, 1997)

Hywind concept, (Equinor, 2005) ISOPE-2019

Toroidal hull – a historical concept

The toroidal hull concept was first suggested by ERNO Raumfahrttechnik GmbH and partners as a new design of semisubmersible called the RS 35 for rough weather operation (Source: The naval architect, 1980)

The symmetrical arrangement is said to give good motion characteristics and eliminated the need for cross bracing.

❑ The toroidal form was suggested for the design of underwater missile launches and an underwater space station (Ross, 2005)

- Toroidal hull scale of the structure
 D Diag bull: overall diameter of about 40
 - □ <u>Ring-hull</u>: overall diameter of about **100 m**
 - □ <u>Tubular</u> sections: diameter of about **10 m**
 - □ <u>Vertical columns</u>: diameter of about **12 m**
 - □ In its operational mode the ring-hull is submerged to a depth of about **20 m**

- Toroidal hull historical results of seakeeping tests
 - The transfer function of heave, surge and pitch prove the excellent response characteristics of this design
 - In the period range of 5-12 the platform motions are extremely small since the forces acting on the submerged torus are nearly cancelled by the forces on the columns.
 - The drag resistance of the ring structure is about half of the transverse resistance of a comparable twin hull semi-submersible.

 Toroidal hull applied to a hybrid wind and wave energy structure

• Specifications, Motions and Forces

- Forces
 - The variation in pressure due to the passage of the wave the Froude-Krylov force
 - 2. Inertia forces due to the effects of the acceleration of the particles within the wave on the **added virtual mass** of the body
- Surface wave \rightarrow $y = \zeta_0 \cos(kx)$

$$y = \zeta_0 \cos(kx - \omega t)$$
, where $\zeta_0 = 0.5H_u$

○ Heave response \rightarrow

$$(M + M_{AVM,y})\ddot{y} + c\dot{y} + ky.y = F_{WAVE}$$

• Solution \rightarrow $RAO(\omega) = \frac{F(\varpi)}{-m.\varpi^2 + k}$ $y = \frac{(F_{wave}/K, y)\cos(\omega t + \phi)}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\omega}{\omega_n}\omega_d\right)^2}}$

• Torus

- The added mass and drag coefficients are two critical parameters for accurate prediction of hydrodynamic forces on the floater.
- The added mass can be deduced from a simple strip theory, as the product of the two dimensional added mass and the circumference of the torus.

• Evaluation of Added-Mass and Forces on a Torus

$$b_{33} \cong \pi c B_{33}$$
$$m_{33} \cong 2\pi c M_{33} \cong \left[\frac{(1-4)}{(3\pi Ka)m}\right]$$

$$F_{hull} = -2\pi R.\omega^2 . \zeta_0 . e^{-kz} . [\cos(KR.\cos.\theta)]$$

$$J_{0}(Z) = \frac{1}{2\pi} \int_{0}^{2\pi} \cos (Z \cos \theta) d\theta$$
$$J_{1}(Z) = \frac{1}{2\pi} \int_{0}^{2\pi} \cos \theta \sin (Z \cos \theta) d\theta$$

Modelling Criteria
 Using Froude's law and the sale as λ (1:200)

VARIABLE	UNIT	SCALE FACTOR	REMARKS
Length	L	λ	Any characteristic dimension of the object
Displacement	L	λ	Position at rest is considered as zero
Natural Period	Т	$\lambda^{1/2}$	Period at which inertia force = restoring force
Force	MLT ⁻²	λ ³	Action of one body on another tend to change the state of motion on the body
Wave Height	L	λ	Consecutive crest to trough distance
Density	ML ⁻³	λ	Mass per unit volume

Scaled components

Item	Geometry	Prototype Dimension [m]	Model Dimensions [m]
Pontoon	Diameter 1	120	0.600
	Diameter 2	4.48	0.022
Column	Diameter	5.58	0.028
	Height	22.58	0.113
Deck	Length	95.3	0.477
	Height	10	0.050
Tower	Length	80	0.400
	Diameter	5	0.025
Turbine	Rotor Diameter	40	0.200

□ Specifications

Flume length	11 m	
Width	1.8 m	
Water depth	1 m	
Air Clearance	1 m	
Central measurement section	3 m	
Water velocity	1 m/s	
Wind velocity	20 m/s	
Period Range	0.8 – 4 sec	
Wave height	0.02 -0.2m (Period Dependent)	

ISOPE-2019 Honolulu

Instrumentation
 QUALYSIS motion tracking system
 Displacement
 Ventrino+ velocity probe
 Water particle velocity
 Capacity probe
 Wave motion

- Instrumentation
 Load cells
 - Data acquisition system- LabView

Low waves, long period

Medium waves, long period

High waves, short period

High waves, long period

Medium current only

Low current only

ISOPE-2019

• RAOs (Heave, Surge, Pitch)

• Heave RAO

• Pitch RAO

PITCH RAO (Hybrid)

• Surge RAO

SURGE RAO

Motions with current only

Test number U	Test speed (m/s)	
1	0.2	
2	0.365	
3	0.42	
4	0.45	

Conclusion

- The torus is unique in several aspects.
- The results gives an overview of the <u>hydrodynamic</u> <u>properties</u> of the deep submerged toroidal displacement structure with its circular cross section combined with a barge type structure.
- Possible application with large renewable energy structures such as floating islands as well as using VAWT.
- Detailed numerical modelling is required including the combined wind turbine dynamics and a comparison with other floater types.

Thank you for your time!

Kurt Delpeche

Pacifico Energy K.K.

Roppongi Grand Tower 37F, 3-2-1 Roppongi, Minato-ku, Tokyo 106-0032, Japan Tel: +81-3-4540-7838 (Direct) Mobile: +81-80-2301-7553 Email: <u>kdelpeche@pacificoenergy.jp</u>

