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Background

« Context — Design and Modelling Process

LCOE Need J* Design of model test
Expensive -
) ; Scaling laws
foundations Analysis of problem
Low motion Stat ¢ of orobl Model parameters
response atement of problem
v
Hybrid Conceptual design Calibration of wave tank Model design and drafting
Floater I
Selected scheme Design of instrumentation Model construction
Toroidal Hull
Calibration of instrumentation Model Calibration
Embodiment of scheme
J’ Decay test
Detailing
v Run wave test
Working drawings etc.
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Background

Taut moored SPAR Shim wind-wave device (Cho Box girder (Ohta et al, 2003)
(Susuki et al) and Shim, 1999)

|
|
|
i |

TLP concept (Musial et al, Multi-turbine floater Hywind concept, (Equinor,
2004) (Henderson, 1997) 2005)
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Background

« Current concepts .
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Background

» Toroidal hull — a historical concept

O The toroidal hull concept was first suggested A
by ERNO Raumfahrttechnik GmbH and
partners as a new design of semi-
submersible called the RS 35 for rough
weather operation (Source: The naval

architect, 1980)

U The symmetrical arrangement is said to give
good motion characteristics and eliminated

the need for cross bracing.

O The toroidal form was suggested for the
design of underwater missile launches and
an underwater space station (Ross, 2005) ISOPE-2019
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Background

 Toroidal hull — scale of the

structure
1 Ring-hull; overall diameter of about 100 m

 Tubular sections: diameter of about 10 m

1 Vertical columns: diameter of about 12 m

O In its operational mode the ring-hull is
submerged to a depth of about 20 m
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Background

 Toroidal hull — historical results of

seakeeping tests

— The transfer function of heave, surge and
pitch prove the excellent response
characteristics of this design

— In the period range of 5-12 the platform
motions are extremely small since the
forces acting on the submerged torus
are nearly cancelled by the forces on the
columns.

— The drag resistance of the ring structure is =
about half of the transverse resistance of .
a comparable twin hull semi-submersible. |
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Design and Hydrodynamics

 Toroidal hull

applied to a hybrid |
wind and wave s [ "| / |

energy structure ‘
\

Water
- turbines
oy T — .

Curved ramp

to promote
overtopping

\ Torodial hull
and column

Turret mooring
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Design and Hydrodynamics

» Specifications, Motions and Forces

R

LEFT HAND WIEW FRONT WIEW

Tidal currents




Design and Hydrodynamics

e Forces

1. The variation in pressure due to the passage of the wave — the
Froude-Krylov force

2. Inertia forces due to the effects of the acceleration of the
particles within the wave on the added virtual mass of the body

o Surface wave—> y = é’g cos(kx— a}f), where é’D — 0_5}}'H

(A + M‘{m:y)j} +cy+kyy=F,,
(me,e / K., )cos(a}r + gzﬁ)

o Solution> Y= e ]
Flm _| @ 200
R10(0) = F@_ [l (QH [ 22a,]
_i'}'i'-l'I-r‘+-':L_ n n
\SOPE-2019
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Design and Hydrodynamics

e Torus

U The added mass and drag
coefficients are two critical
parameters for accurate
prediction of hydrodynamic
forces on the floater.

1 The added mass can be
deduced from a simple strip
theory, as the product of the
two dimensional added mass
and the circumference of the
torus.

P
Cos F
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Design and Hydrodynamics

e Evaluation of Added-Mass and Forces on a Torus

by, = 7cB;,

= 277cM, ;[ (1-4) }

" (37Ka )m

F,. =-27Rw* ¢, e " [cos(KR.cos.0)]

2r
J,(Z)= ﬁ.[cos (Z cos 0)do
0

1 .
—— | cos & sin (Z cos @ )dO
271 5
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Experimental Set-up

* Modelling Criteria
dUsing Froude’s law and the sale as A (1:200)

Length L

Displacement L
Natural Period T

Force MLT-2
Wave Height L
Density ML-3

ISOPE

\ 172

)\3

Any characteristic dimension of the object

Position at rest is considered as zero
Period at which inertia force = restoring
force

Action of one body on another tend to

change the state of motion on the body

Consecutive crest to trough distance
Mass per unit volume
ISOPE-2019
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« Scaled components

Pontoon
Column
Deck
Tower

Turbine

ISOPE

Experimental Set-up

Diameter 1
Diameter 2
Diameter
Height

Length

Height

Length
Diameter

Rotor Diameter

120
4.48
5.58

22.58
95.3
10
80

40

0.600
0.022
0.028
0.113
0.477
0.050
0.400
0.025
0.200
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Experimental Set-up

O Specifications

Flume length 1M1m
Width 1.8 m
Water depth 1m
Air Clearance 1m

Central measurement section |3 m

Water velocity 1 m/s

Wind velocity 20 m/s

Period Range 0.8 -4 sec

Wave height 0.02 -0.2m
(Period
Dependent)
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Experimental Set-up

|

LI T

Motion targets
monitored by

camera
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and currents

Velocity probe

4

% N Spring

Mooring

Load cell

Enwironment

1n

1000

mm

LG

332 mm

ISOPE-2019



Experimental Set-up

 |nstrumentation

dJQUALYSIS motion tracking
system
» Displacement

dVentrino+ velocity probe
» Water particle velocity

L Capacity probe

» Wave motion
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Experimental Set-up

* Instrumentation
Load cells

L Data acquisition
system- LabView
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Results

* Decay test

d Computation of the damped
frequency motion

L Extinction curve for the
structure in heave

JAdded mass and damping

Decay Curve: Surge
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Results

Low waves, long period High waves, short period Medium current onIy
[

Medium waves, long period High waves, long period
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Results

SURGE SWAY HEAVE
100 40 40
Hs=2cm Hs=2cm Hs=4cm
80 Hs=4cm Hs=2cm
3 ~30 —— Hs=8m =30 —— Hs=8cm
£ E £
E £ E
€ 60 = ‘E
£ £ 20 920
§40 & g
0 Q
o s a
a 210 010
1]
0 : 0 : 0 :
0 5 10 0 5 10 0 5 10
Frequency (rad/sec) Frequency (rad/sec) Frequency (rad/sec)
ROLL PITCH YAW
0.6 6 5
Hs=2cm Hs=2cm Hs=2cm
05 Hs=4cm || 5 Hs=4cm . 4 Hs=4cm
' —— Hs=8cm —— Hs=8cm — Hs=8cm
) =4 7
.4 g 33
c -3 =
<] c =
gj.a é B2 /
2
& g .
0.2 1 1
0.1 0 0

o
o

5 10 5 10 0 5 10
Frequency (rad/sec) Frequency (rad/sec) Frequency (rad/sec)

IS

Honolulu

OPE

-2019

|
!
I

S Nt



Results

 RAOs (Heave, Surge, Pitch)

RAO
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/to long waves
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Results

« Heave RAO

HEAVE RESPONSE AMPLITUDE OPERATOR (RAO)
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Pitch RAO
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Results

Surge RAO
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Results

* Motions with current only

Test number U | Test speed (m/s)
1 0.2
2 0.365
3 0.42
4 0.45
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Conclusion

The torus is unique in several aspects.

The results gives an overview of the_hydrodynamic
properties of the deep submerged toroidal displacement
structure with its circular cross section combined with a
barge type structure.

Possible application with large renewable energy
structures such as floating islands as well as using
VAWT.

Detailed numerical modelling is required including the
combined wind turbine dynamics and a comparison with
other floater types.
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Thank you for your time!

Kurt Delpeche

Pacifico Energy K.K.

Roppongi Grand Tower 37F,

3-2-1 Roppongi, Minato-ku, Tokyo 106-0032, Japan
Tel: +81-3-4540-7838 (Direct)

Mobile: +81-80-2301-7553

Email: kdelpeche@pacificoenergy.jp
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